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a  b  s  t  r  a  c  t

Reinforcement  learning  theory  distinguishes  “model-free”  learning,  which  fosters  reflexive  repetition  of
previously  rewarded  actions,  from  “model-based”  learning,  which  recruits  a  mental  model  of  the  environ-
ment  to flexibly  select  goal-directed  actions.  Whereas  model-free  learning  is  evident  across  development,
recruitment  of model-based  learning  appears  to  increase  with  age.  However,  the  cognitive  processes
underlying  the  development  of  model-based  learning  remain  poorly  characterized.  Here,  we examined
whether  age-related  differences  in  cognitive  processes  underlying  the construction  and  flexible  recruit-
ment  of mental  models  predict  developmental  increases  in  model-based  choice.  In a  cohort  of  participants
aged  9–25,  we examined  whether  the  abilities  to infer sequential  regularities  in the  environment  (“sta-
tistical  learning”),  maintain  information  in  an  active  state  (“working  memory”)  and  integrate  distant
concepts  to  solve  problems  (“fluid  reasoning”)  predicted  age-related  improvements  in model-based
choice.  We  found  that  age-related  improvements  in statistical  learning  performance  did  not  mediate  the

relationship  between  age  and  model-based  choice.  Ceiling  performance  on  our working  memory  assay
prevented  examination  of  its contribution  to model-based  learning.  However,  age-related  improvements
in  fluid  reasoning  statistically  mediated  the  developmental  increase  in the  recruitment  of  a model-based
strategy.  These  findings  suggest  that  gradual  development  of  fluid reasoning  may  be a  critical  component
process  underlying  the  emergence  of  model-based  learning.

© 2016  Published  by Elsevier  Ltd.  This  is an  open  access  article  under  the  CC  BY-NC-ND  license
. Introduction

Individuals can recruit a variety of evaluative strategies to make
veryday decisions. Reinforcement learning theory distinguishes
wo such strategies: model-based and model-free learning (Daw
t al., 2005, 2011; Glascher et al., 2010). Model-based learning
equires the construction of a cognitive model of potential actions
nd their consequences, which can be consulted to determine the
est way to pursue a current goal. Such learning supports flexi-
le behavior in novel situations and can readily take into account
hanges in the environment. By contrast, model-free learning sim-
ly estimates the value of reflexively repeating an action based
Please cite this article in press as: Potter, T.C.S., et al., Cognitive comp
Dev. Cogn. Neurosci. (2016), http://dx.doi.org/10.1016/j.dcn.2016.10.0

n whether it previously led to good or bad outcomes, without
epresenting the specific outcomes themselves. While model-free
earning is computationally efficient, it cannot rapidly adjust to
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changes in the value of an outcome or changes in contingency
between an action and outcome.

Many decisions or actions can be evaluated in a model-based or
a model-free manner. Effective behavioral control often involves
striking a context-dependent balance between these deliberative
versus automatic strategies. Recent research suggests that while
model-free learning is consistently employed across developmen-
tal stages, recruitment of model-based learning tends to increase
with age (Decker et al., 2016). Across diverse decision-making con-
texts or tasks, younger individuals exhibit patterns of behavior that
reflect greater reliance on a model-free strategy, whereas older
individuals rely more on model-based learning (Decker et al., 2016;
Klossek et al., 2008; Piaget, 1954; Zelazo et al., 1996). The develop-
mental timepoint at which one typically shifts toward employing a
model-based strategy may  depend on both the intrinsic complexity
of the task at hand, as well as the maturity of the myriad cognitive
processes required for the formation and recruitment of a mental
onents underpinning the development of model-based learning.
05

model of that task.
To make goal-directed decisions, individuals must be able to

anticipate likely events, consider the consequences of their poten-
tial actions, and evaluate the most efficient means to obtain a

Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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esired outcome. The ability to recognize which events tend to fol-
ow each other in sequence or covary with high probability is often
eferred to as statistical learning (Turk-Browne et al., 2005). Sim-
le forms of statistical learning are present in infants and children
Amso and Davidow, 2012; Fiser and Aslin, 2002), demonstrat-
ng that individuals can build cognitive models of environmental
tatistics from early on in development. However, in other tasks,
tatistical learning performance has been observed to improve with
ge (Schlichting et al., 2016), suggesting that learning of more
omplex sequential structures may  emerge later in development.
ore accurate representations of the statistical structure of a task
ay  facilitate model-based choice. However, whether increased

ecruitment of model-based learning with age might reflect devel-
pmental improvements in statistical learning remains an open
uestion.

Developmental changes in the reliance on model-based learning
ight also reflect an increasing capacity to recruit learned cogni-

ive models to guide decisions. Working memory, the ability to
aintain mental representations in an active state despite inter-

erence, is a key component of model recruitment (D’Esposito and
ostle, 2015). Introducing working memory load during decision-
aking reduces adults’ use of a model-based strategy (Otto et al.,

013a), and high working memory capacity buffers individuals
rom stress-induced impairment of model-based learning (Otto
t al., 2013b). Another important process potentially underlying
uccessful model recruitment is fluid reasoning, the capacity to
exibly integrate independent goal-relevant associations across
omains. Fluid reasoning involves the reorganization, transforma-
ion, and extrapolation of learned conceptual relationships in order
o solve novel problems (Cattell, 1987; McArdle et al., 2002). Both
orking memory and fluid reasoning have been shown to increase

rom early childhood into young adulthood (Ferrer et al., 2009; Fry
nd Hale, 1996), suggesting that either of these processes, or their
ntegrated function, may  foster increased recruitment of model-
ased choice.

Building upon a previous finding that model-based reinforce-
ent learning increased with age from childhood into adulthood

Decker et al., 2016), in this study, we sought to characterize the
ognitive underpinnings of this developmental trajectory. Given
revious observations of age-related changes in statistical learning,
orking memory, and fluid reasoning, we examined the contribu-

ions of these putative component processes to the development
f model-based choice in a sequential reinforcement-learning task.
e found that fluid reasoning, but not statistical learning, mediated

he relationship between age and model-based choice. Ceiling per-
ormance on our working memory assay prevented examination of
ts contribution to model-based learning. Collectively, these find-
ngs suggest that the protracted development of fluid reasoning
bility may  be a critical process underpinning the gradual emer-
ence of model-based learning.

. Methods

.1. Participants

22 children (aged 9–12), 23 adolescents (13–17), and 24 adults
18–25) took part in this study. All participants, and parents of

inors, provided written informed consent according to the pro-
edures of the Weill Cornell Medical College Institutional Review
oard and received monetary compensation for participation. Sub-

ects completed a sequential reinforcement-learning task while
Please cite this article in press as: Potter, T.C.S., et al., Cognitive comp
Dev. Cogn. Neurosci. (2016), http://dx.doi.org/10.1016/j.dcn.2016.10.0

ndergoing a functional MRI  scan. Neuroimaging data are not
nalyzed or reported here. Subjects also completed a statisti-
al learning task, and two subtests of the Wechsler Abbreviated
cale of Intelligence (WASI, matrix-reasoning and vocabulary
 PRESS
e Neuroscience xxx (2016) xxx–xxx

sections). Subjects who missed more than 15 trials (10% of tri-
als) during the reinforcement-learning task were excluded from
analysis, leaving 19 children (13 females, 10.5 ± 1.1 years), 22 ado-
lescents (12 females, 14.7 ± 1.5 years) and 23 adults (14 females,
21.6 ± 2.1 years) in the final sample. Of these participants, statisti-
cal learning task data for 1 child was not acquired due to a computer
malfunction, 1 adolescent and 2 adults did not complete the WASI
matrix-reasoning subtest, and 1 adolescent and 2 adults did not
complete the WASI vocabulary subtest. A subset of participants (14
children, 17 adolescents, 18 adults) also completed the listening
recall subtest of the Automated Working Memory Assessment.

2.2. Reinforcement-learning task

The two-stage sequential reinforcement-learning task was
adapted for developmental populations by Decker et al. (2016) from
a task designed by Daw et al. (2011) to dissociate model-based and
model-free evaluative strategies (Fig. 1A). In this paradigm, par-
ticipants were tasked with collecting space treasure, and were told
they would be paid a monetary bonus based on the amount of space
treasure that they found. At the first stage of each trial, participants
selected one of two spaceships (“first-stage choice”) that would
make a probabilistic transition to a red or purple planet. Each space-
ship transitioned to one planet more frequently than the other (70%
of trials versus 30%). These “common” and “rare” transition proba-
bilities did not change during the task. Once at a planet, participants
then selected one of two  aliens to ask for space treasure (“second-
stage choice”). Each alien provided treasure according to a slowly
drifting probability of reward. Subjects had three seconds to make
a choice at each stage.

The task was designed to dissociate use of a model-based strat-
egy, in which individuals recruit a mental model of the task’s
probabilistic state transition structure, from use of a model-free
strategy, which requires only cached estimates of the past rewards
associated with preceding first-stage actions.

All participants played a 50-trial tutorial to become familiar with
the structure of the task before completing the 150-trial task in
the scanner; the tutorial and full versions of the task had differ-
ent colored stimuli but the same task structure and rules. During
the tutorial, participants were instructed that each spaceship usu-
ally went to a specific planet, but had to learn the transitions and
probabilities themselves from the task. All subjects, regardless of
performance, received a fixed bonus payment at the end of the scan.

Using a previously described analytical approach (Daw et al.,
2011), we fit a hybrid reinforcement-learning model to partici-
pants’ choice data. The hybrid model allows participants’ choices
to reflect a weighted average of both model-free and model-based
evaluation algorithms. Relative weighting of the two strategies is
parameterized by w, where 0 reflects purely model-free evaluation
and 1, purely model-based. The model-free algorithm implemented
is a SARSA(�) temporal difference algorithm that incrementally
updates the value of first-stage stimuli based on both the learned
value of a second-stage state and the received reward. The lat-
ter is modulated by an eligibility trace parameter lambda (�) that
only carries value across stages within the same trial. By contrast,
the model-based algorithm computes the value of each first-stage
choice by multiplying second-stage values by the 70%/30% transi-
tion probability. Both algorithms update the second-stage stimulus
values the same way, incrementing by the reward-prediction error
multiplied by a learning rate alpha (�). At each first and second
stage decision point, a softmax choice rule is used to assign a
probability to each action based on the weighted model-free and
onents underpinning the development of model-based learning.
05

model-based values of all available actions; this softmax rule is
parameterized by a single inverse temperature parameter (�). A
stay bias parameter (p), reflects value-independent perseveration
across trials. For each participant’s data, the model-based weight

dx.doi.org/10.1016/j.dcn.2016.10.005
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Fig. 1. Task Designs (A) Reinforcement learning task. Each first-stage option (“spaceship”) was  associated with one of the second-stage states more frequently (70%) than
t robab
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he  other (30%). These transition probabilities were fixed throughout the task. The p
50  trials. (B) Statistical learning task. A continuous stream of stimuli was  comprise
o  illustrate the type of problems encountered during fluid reasoning task.

w), learning rate alpha (�), eligibility parameter lambda (�), soft-
ax  inverse temperature parameter (�), and stay bias parameter

p) were estimated simultaneously by maximum a posteriori esti-
ation (Daw et al., 2011).

To evaluate aggregate performance in each categorical age
roup (i.e., children, adolescents, and adults), we also performed

 generalized linear mixed-effects regression analysis on each age
roup separately using the ‘lme4’ package for the R-statistics lan-
uage (Bates et al., 2015). First-stage choice (stay or switch from
revious trial) was modeled as a function of reward on the previ-
us trial (reward or no reward), transition on the previous trial
rare or common), and the reward-by-transition interaction as
xed effects (Daw et al., 2011; Decker et al., 2016). Model-free
nd model-based strategies predict different patterns of first-stage
hoices in the task. Whereas a model-free chooser is likely to
epeat rewarded first-stage choices without taking into account
he task transition structure, a model-based chooser will be less
ikely to repeat first-stage choices that are rewarded following a
are transition, and more likely to repeat choices that are unre-
arded following a rare transition. Thus, the terms of interest
ere the fixed effect coefficients of reward (model-free estimate)

nd the reward-by-transition interaction effect (model-based esti-
ate) for each age group. Additionally, individual adjustments to

he fixed intercept (‘random intercept’) and to previous reward,
ransition, and reward-by-transition interaction terms (‘random
lopes’) were determined for each participant. The terms of interest
ere the fixed-effect coefficients of reward (model-free term) and

he reward-by-transition interaction effect (model-based term) for
ach age group. The first 9 trials for every participant were removed,
s were all trials in which the participant did not make both first
nd second stage choices.

.3. Statistical learning task

The statistical learning task consisted of two distinct phases, a
Please cite this article in press as: Potter, T.C.S., et al., Cognitive comp
Dev. Cogn. Neurosci. (2016), http://dx.doi.org/10.1016/j.dcn.2016.10.0

amiliarization phase and a test phase (Schapiro et al., 2014). Dur-
ng the familiarization phase, 12 abstract shapes were presented,
ne at a time, in a continuous stream without breaks or delays for
.8 min. Each shape was present for 0.5 s and the shapes were sepa-
ility of reward for each second-stage option (“alien”) drifted slowly throughout the
ur interleaved stimulus triplets. (C) Matrix reasoning task. Example puzzle created

rated by a 0.5 s inter-stimulus interval. Participants were instructed
to simply watch the stream carefully. Unbeknownst to participants,
the sequence of shapes was comprised of 4 distinct triplets (each
of the 12 shapes appeared in one triplet only) with a fixed internal
order (Fig. 1B). However the triplets were semi-randomly inter-
leaved to form the continuous stream of stimuli such that no triplet
was repeated in immediate succession. After the passive viewing
stage subjects were then tested on their ability to identify the famil-
iar triplets during a 32-trial test phase. For each trial, subjects were
presented with two test triplets, one of which was  previously pre-
sented during the familiarization phase and the other of which was
a foil triplet that was never observed in the presented sequence.
Participants were asked to identify which of the two test triplets
was more familiar based on the first part of the task. We  used the
percentage of the familiar triplets that were correctly identified
during the test phase as the index of statistical learning ability.

2.4. Fluid reasoning task

Each participant completed two subtests of the Wechsler Abbre-
viated Scale of Intelligence (WASI), the matrix-reasoning section
and the vocabulary section, respectively designed to measure fluid
reasoning and crystallized intelligence, (Wechsler, 1999) (Fig. 1C).
The subtests were administered according to standard instruc-
tions.

The matrix reasoning subsection of the WASI was used as a
measure of fluid reasoning. The complete matrix-reasoning sec-
tion includes 35 puzzles, but children between the ages of 9 and 11
are only presented with the first 32 puzzles. Therefore, to obtain a
comparable index of fluid reasoning ability across age groups, we
only used participants’ raw scores (number correct) on these first
32 puzzles. While doing so potentially truncated the adolescent
and adult scores, it allowed us to evaluate how well all subjects of
different ages fared on the same group of puzzles.

To examine whether any observed effects of fluid reasoning
onents underpinning the development of model-based learning.
05

were due to a more broadly constructed concept of intelligence,
the vocabulary subsection of the WASI was used as a measure of
crystallized intelligence. Similarly to the fluid-reasoning index, we
used participants’ raw scores (number of points earned) for the first

dx.doi.org/10.1016/j.dcn.2016.10.005
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Table 1
Matrix showing the Pearson correlation coefficients between age and performance on all tasks. Statistically significant relationships denoted in bold. P-values given in
parentheses.

Age Model-based choice
parameter (w)

Statistical
learning index

Working
memory score

Fluid reasoning
score

Age
Model-based choice parameter (w) 0.30

(0.01)
Statistical learning index 0.33

(0.007)
0.31
(0.01)

Working memory score 0.23 0.31 0.09
(0.53)
0.51
(<0.0001)

0.28
(0.06)
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Table 2
Results of mixed-effects logistic regression quantifying the effects of previous
reward and transition type on first-stage choice repetition within each age group.
Significant p-values (<0.05) denoted in bold.

Predictor Estimate (SE) X2 (df = 1) p-value

Child (N = 19)
Intercept 0.38 (0.20) 3.54 0.060
Reward 0.26 (0.09) 6.87 0.0088
Transition −0.07 (0.07) 1.05 0.31
Reward by Transition 0.07 (0.10) 0.45 0.50
Adolescent (N = 22)
Intercept 0.79 (0.20) 11.61 0.0007
Reward 0.29 (0.11) 6.72 0.0095
Transition 0.02 (0.07) 0.08 0.78
Reward by Transition 0.39 (0.10) 13.14 0.0003
Adult (N = 23)
Intercept 1.40 (0.18) 28.92 <1e-7
Reward 0.25 (0.09) 6.79 0.0092
Transition 0.06 (0.07) 0.74 0.39
Reward by Transition 0.43 (0.11) 11.41 0.0007
(0.12) (0.03)
Fluid reasoning score 0.53

(<0.0001)
0.41
(<0.001)

4 items, which were presented to participants in all age ranges in
ur study. This scoring method allowed us to evaluate how well all
ubjects answered the same set of vocabulary questions.

.5. Working memory task

The listening-recall subtest of the Automated Working Mem-
ry Assessment (Alloway, 1999) was used as a measure of working
emory, indexing a participant’s ability to maintain information

espite interference. Participants were read 8 single sentences and
 pairs of sentences by the researcher. For each single sentence, the
articipant first listened to the sentence once, then stated whether
he sentence was true or false (processing portion) and repeated the
ast word of the sentence (recall portion). For each pair of sentences,
he participant first heard the first sentence, made a true/false dec-
aration, did the same for the second sentence, and then repeated
he last words of both sentences in sequential order. Participants
ere given as much time as needed to complete the processing and

ecall of each sentence.
For each participant, a recall subscore was tabulated as the num-

er of sequences (single or paired sentences) out of 15 for which
he participant correctly recalled the last word(s). A processing sub-
core was also tabulated as the number of individual sentences for
hich the participant correctly answered true or false. The partic-

pant’s working memory score was calculated as the sum of these
ecall and processing subscores. The processing component, requir-
ng the subject to evaluate the semantic content of the sentence to
etermine whether it was true or false, serves to interfere with the
aintenance of the to-be-recalled information. Poor performance

uring the processing portion of the task might reflect a failure to
ngage this competing cognitive process, making recall easier and
nflating the recall subscore. By including both the processing sub-
core and the recall subscore in the measure of working memory,
e assessed how well a subject maintained information despite

nterference.

.6. Mediation tests

Our mediation analyses were performed using the publicly
vailable causal mediation analysis (‘mediate’) package for R
Tingley et al., 2014). Non-parametric bootstrap estimates of path
oefficients were obtained by random sampling with replacement
f 100,000 observations from our sample. Bias-corrected and accel-
rated (BCa) 95% confidence intervals (DiCiccio and Efron, 1996)
ere used to calculate two-tailed p-values describing significance

f the indirect and mediated direct effects.

. Results
Please cite this article in press as: Potter, T.C.S., et al., Cognitive comp
Dev. Cogn. Neurosci. (2016), http://dx.doi.org/10.1016/j.dcn.2016.10.0

.1. Learning behavior in two-stage task

We  first examined overall performance in the reinforcement-
earning task. There was no relationship between age and overall
performance on the reinforcement-learning task as indexed by
total treasure acquired (r = 0.18, p = 0.14). Moreover, there was no
relationship between total treasure acquired and recruitment of
model-based strategy, as indexed by the w parameter (r = −0.09,
p = 0.48). Because increased recruitment of model-based learning
did not confer an advantage in the ability to earn reward, there was
not necessarily an “optimal” strategy in this task. Thus, this task
might be better conceived of as indexing an individual’s default
mode of evaluation, rather than reflecting a cost-benefit calculation
of which strategy is best.

We then evaluated whether our cohort showed age-related
increases in model-based learning in the two-stage task. We  found
that the reinforcement-learning w parameter significantly and
positively correlated with age (r = 0.30, p = 0.01; Fig. 2, Table 1).
Across all subjects, the median and inter-quartile range (IQR)
for each reinforcement-learning parameter were: model-based
weight (w, median = 0.52, IQR = 0.16–0.71), learning rate alpha
(�, median = 0.42, IQR = 0.05–0.76), eligibility parameter lambda
(�, median = 0.62, IQR = 0.29–0.90), softmax inverse temperature
parameter (�, median = 2.91, IQR = 2.40–4.02), and stay bias param-
eter (p, median = 0.14, IQR = −0.04–0.36).

To quantify the degree of model-based choice at various devel-
opmental stages, we  conducted a mixed-effects logistic regression
analysis within each age group (Table 2). All age groups showed
a significant main effect of reward (the model-free signature);
however only adolescents (p < 0.0001) and adults (p = 0.0002), but
not children (p = 0.50), showed a reward-by-transition interaction
effect (the model-based choice signature). These results corrobo-
rate a previous finding that evidence of model-based learning is not
onents underpinning the development of model-based learning.
05

present in this task during childhood, but emerges in adolescence
and increases into early adulthood (Decker et al., 2016).

dx.doi.org/10.1016/j.dcn.2016.10.005
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ig. 2. There was a significant positive correlation between participants’ age and th
 = 0.01).

.2. Knowledge of transition structure and statistical learning

Participants in all age groups demonstrated similar levels of
xplicit knowledge of the task structure in their reports after the
ask (“Which spaceship went mostly to the green planet?”) (X-
quared = 3.62, df = 2, p = 0.16; 100% (19/19) children, 82% (18/22)
dolescents, and 87% (20/23) adults answered correctly).

Examination of response times (RT) following rare versus
ommon transitions can also be interpreted as evidence of a par-
icipant’s knowledge of the task’s transition structure. Slower
econd-stage responses following rare transitions may  reflect a
iolation of the expectation that the more frequent state tran-
ition would occur. Children (paired t = 2.95, df = 18, p = 0.0085),
dolescents (paired t = 2.87, df = 21, p = 0.0091), and adults (paired

 = 5.31, df = 22, p < 0.0001) all showed significantly slower RTs for
are compared to common trials across the entire task. However,
f trials are divided in thirds into early, middle, and late “blocks,”
nly adults (paired t = 3.93, df = 22, p = 0.0007) showed significant
T slowing in the first block of 40 trials (children: paired t = 1.51,
f = 18, p = 0.15; adolescents: paired t = 1.81, df = 21, p = 0.085). We
hen tested whether RT slowing was predictive of greater model-
ased choice. Such a relationship has previously been shown in
dolescents and adults (Decker et al., 2016; Deserno et al., 2015),
ut did not appear in children (Decker et al., 2016). Corroborating
hese previous findings, second-stage RT slowing was  associated
ith more model-based choice (indexed by the w parameter from

he hybrid RL model) in adults (r = 0.60, p = 0.0025) and adolescents
r = 0.56, p = 0.0064), but not children (r = 0.36, p = 0.13).
Please cite this article in press as: Potter, T.C.S., et al., Cognitive comp
Dev. Cogn. Neurosci. (2016), http://dx.doi.org/10.1016/j.dcn.2016.10.0

.3. Statistical learning

We  found that all age groups showed above chance perfor-
ance on the statistical learning task (one-sample t-tests: children:
orcement-learning w parameter indexing degree of model-based learning (r = 0.30,

t = 4.74, df = 17, p < 0.0001; adolescents: t = 8.00, df = 21, p < 1e-7;
adults: t = 14.64, df = 22, p < 1e-12), but that accuracy did improve
with age (r = 0.33, p = 0.0075). Statistical learning performance also
correlated positively with model-based choice, as indexed by the
w parameter (r = 0.31, p = 0.01). A mediation analysis revealed that
statistical learning did not mediate the relationship between age
and model-based choice (standardized indirect effect 0.08, 95%
confidence interval −0.004–0.19, p = 0.09). However, it is possible
that this trend-level mediation effect would reach significance in a
study with a larger sample size.

While participants’ response time slowing in the reinforcement-
learning task following rare versus common transitions reflected
knowledge of the transition structure, this knowledge could have
stemmed from experiential learning, or from explicit instruction
about the probabilistic transition structure provided to participants
in the tutorial. We  examined whether participants’ RT slowing cor-
related with statistical learning performance, which might suggest
a relationship between RT slowing and the ability to learn underly-
ing statistical regularities through experience. Performance on the
statistical learning task correlated positively with second-stage RT
slowing in the reinforcement-learning task for rare compared to
common trials (r = 0.41, p = 0.0008).

Collectively, these results suggest that statistical learning may
facilitate the construction of a cognitive model of the task
in participants of all ages. However, increases in participants’
ability to learn experienced environmental statistics did not
account for developmental increases in the use of a model-based
reinforcement-learning strategy.
onents underpinning the development of model-based learning.
05

3.4. Fluid reasoning

Our measure of fluid reasoning, the raw score on the first 32
questions of the matrix-reasoning subtest of the WASI, increased

dx.doi.org/10.1016/j.dcn.2016.10.005
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Fig. 3. Fluid reasoning (WASI matrix subscore) fully mediated the relationship between age and model-based strategy. *Denotes p < 0.05; ***denotes p < 0.001. (single
column-fitting image). Path a shows the least-squares regression coefficient of the relationship between age and fluid reasoning. Path b shows the estimated coefficient for
the  relationship between fluid reasoning and model-based learning. Paths c and c′ respectively show coefficients for the effects of age on model-based learning in univariate
and  multivariate (with fluid reasoning) regressions.

Fig. 4. WASI matrix subscore fully mediated the relationship between statistical learning and model-based learning. *Denotes p < 0.05; ***denotes p < 0.001. Path a shows the
l  and fl
fl cient
m

w
b
A
t
i
p
−
i
i
r

r
n
b
t
c
t
v
a
c
e
t

c
r
t
s
m
b

east-squares regression coefficient of the relationship between statistical learning
uid  reasoning and model-based learning. Paths c and c′ respectively show coeffi
ultivariate (with fluid reasoning) regressions.

ith age (r = 0.53, p < 0.0001) and correlated positively with model-
ased choice, as indexed by the w parameter (r = 0.41, p = 0.001).

 mediation analysis revealed that fluid reasoning fully mediated
he relationship between age and model-based choice (standard-
zed indirect effect 0.634, 95% confidence interval 0.198-1.23,

 = 0.01; standardized direct effect 0.367, 95% confidence interval
0.639-1.35, p = 0.47, Fig. 2). These results suggest that age-related

ncreases in fluid reasoning are a critical cognitive factor underly-
ng the previously observed association between age and increased
ecruitment of model-based learning (Decker et al., 2016).

To determine whether the observed effect was specific to fluid
easoning or could be attributed to intelligence more broadly, we
ext tested whether vocabulary also mediated the relationship
etween age and model-based choice. Vocabulary scores were posi-
ively correlated with both age (r = 0.42, p < 0.001) and model-based
hoice, as indexed by the reinforcement learning w parame-
er (r = 0.28, p = 0.032). However, mediation analysis showed that
ocabulary scores did not mediate the relationship between age
nd model-based choice (standardized indirect effect 0.077, 95%
onfidence interval −0.034 to 0.172, p = 0.15), suggesting that the
ffect of fluid reasoning was specific, rather than relating to crys-
allized intelligence or IQ more generally.

As we hypothesized that statistical learning may  promote the
onstruction of mental models of transition structure, and that fluid
easoning might facilitate the recruitment of such models, we  next
ested whether fluid reasoning mediated the relationship between
Please cite this article in press as: Potter, T.C.S., et al., Cognitive comp
Dev. Cogn. Neurosci. (2016), http://dx.doi.org/10.1016/j.dcn.2016.10.0

tatistical learning and model-based choice. Fluid reasoning fully
ediated the relationship between statistical learning and model-

ased choice (standardized indirect effect 0.614, 95% confidence
uid reasoning. Path b shows the estimated coefficient for the relationship between
s for the effects of statistical learning on model-based learning in univariate and

interval 0.213-1.197, p = 0.01; standardized direct effect 0.430, 95%
confidence interval −0.466 to 1.400, p = 0.36, Fig. 3). Furthermore,
this mediation was  directionally specific: statistical learning did not
fully or partially mediate the relationship between fluid reasoning
and model-based choice (standardized indirect effect 0.292, 95%
confidence interval −0.292 to 1.042, p = 0.36). Collectively, these
results suggest that, independent of age, fluid reasoning accounts
for the relationship between an individual’s statistical learning abil-
ity and their recruitment of model-based learning.

In addition, fluid reasoning fully mediated the relationship
between age and statistical learning (standardized indirect effect
0.227, 95% confidence interval 0.107-0.435, p < 0.001; standardized
direct effect 0.14, 95% confidence interval −0.150 to 0.385, p = 0.31,
Fig. 4). This mediation was directionally specific: statistical learning
did not mediate the relationship between fluid reasoning and age
(standardized indirect effect 0.071, 95% confidence interval −0.075
to 0.213, p = 0.31). These analyses suggest that fluid reasoning con-
tributes to age-related increases in statistical learning ability.

3.5. Working memory

Participants performed well on our measure of working mem-
ory, the listening recall subtest of the Automated Working Memory
Assessment, with 45% of participants, spanning all age groups,
exhibiting ceiling-level performance. This ceiling effect limited our
onents underpinning the development of model-based learning.
05

ability to use this measure in order to clarify the relationship
between working memory and age-related increases in the recruit-
ment of model-based learning. Nonetheless, we observed that
working memory correlated positively with model-based choice

dx.doi.org/10.1016/j.dcn.2016.10.005
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r = 0.31, p = 0.03), but not with age (r = 0.23, p = 0.12, Table 1). We
lso observed a trending positive relationship between our working
emory and fluid reasoning measures (r = 0.28, p = 0.06, Table 1),

onsistent with the extensive previous examinations of this rela-
ionship (Colom et al., 2008; Kane and Engle, 2002). However, these
elationships should be interpreted with caution given our fail-
re to obtain a robust index of individual differences in working
emory performance.

We  also examined whether the AWMA  recall subscore alone
ight provide a more robust measure of working memory. To test
hether variability in the recall subscore might be greater than for

he composite measure, we calculated the coefficient of variation
the mean-scaled standard deviation) for both the recall subscore
0.08) and composite score (0.07) and found that the variability was
omparable for both measures. However, the percentage of par-
icipants who showed ceiling performance increased to 69% using
he recall subscore alone. This suggests that the recall subscore
lso failed to provide a valid metric of working memory perfor-
ance in the sample. Furthermore, we did not find a relationship

etween the recall subscore and age (r = 0.20, p = 0.17) or between
he recall subscore and the reinforcement-learning w parameter
r = 0.15, p = 0.31), indicating no possibility of statistical mediation.

. Discussion

In this study, we sought to elucidate the cognitive components
hat underlie the developmental emergence of model-based learn-
ng. Replicating previous findings in this sequential reinforcement-
earning task (Decker et al., 2016), we found that whereas

odel-free learning was  evident across our developmental sample,
odel-based choice exhibited a protracted maturational trajec-

ory, only becoming evident in adolescence and continuing to
trengthen into adulthood. We  examined whether developmen-
al changes in statistical learning ability, working memory, and
uid reasoning might contribute to the increased recruitment of
odel-based choice with age. We  found that statistical learning

erformance was evident in children and improved with age. How-
ver, these improvements in statistical learning did not account
or age-related increases in model-based choice. In contrast, fluid
easoning increased with age and significantly mediated the rela-
ionship between age and model-based learning. Collectively, these
esults suggest that the ability to integrate distinct learned associ-
tions, and not merely the acquisition of those associations, is a
ritical cognitive component underlying the gradual development
f model-based choice.

Although children did not show evidence of model-based learn-
ng, they demonstrated knowledge of the task transition structure.
hildren, like adolescents and adults, could explicitly describe the
ask structure and were also slower to respond following rare
ransitions, reflecting sensitivity to these less frequent outcomes.
otably, whereas adults’ response time sensitivity was  apparent
arly in the task, this sensitivity only emerged later in children.
dults are able to rapidly incorporate explicit instruction to inform

heir actions (Cole et al., 2013), and may  have used the task descrip-
ion provided in our tutorial to scaffold a cognitive model of
he probabilistic transition structure. In contrast, younger partic-
pants, who tend to rely on experiential over instructed knowledge
Decker et al., 2015), may  have had greater difficulty recruiting this
nstruction to inform choices. Thus, providing instruction may  have
acilitated adults’ recruitment of a model-based strategy. Younger
articipants may  instead have learned the task structure predomi-
Please cite this article in press as: Potter, T.C.S., et al., Cognitive comp
Dev. Cogn. Neurosci. (2016), http://dx.doi.org/10.1016/j.dcn.2016.10.0

antly through the experience they accumulated over many trials.
his proposal is consistent with the observed correlation between
esponse time slowing and participants’ performance on the sta-
istical learning task, in which sequential regularities were learned
 PRESS
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solely through experience. Future studies might test whether chil-
dren exhibit model-based choice if this learned task structure
knowledge grows more “crystallized” through extensive practice.

Performance on the Wechsler Abbreviated Scale of Intelligence
matrix-reasoning subtest, an index of fluid-reasoning ability, sig-
nificantly mediated the relationship between age and model-based
choice. A major component of fluid reasoning is the ability to iden-
tify associations between mental representations across distinct
“dimensions”, often referred to as relational integration (Wright
et al., 2008). As the number of relevant dimensions increases, the
more complex the relation becomes (Christoff et al., 2001). For
example, low-level integration may  involve representing a simple
characteristic of an object (e.g., shape A is a circle), while higher
levels of integration may  involve identifying relations between
properties of multiple objects (e.g., shape B is also a circle, but
a different color) or assessing the relationship between multiple
relations (e.g., shape A is to B as shape C is to D). Like fluid-
reasoning tasks, model-based choice requires the integration of
learned relationships across multiple dimensions. In our sequential
reinforcement-learning task, a model-based chooser must be able
to prospectively integrate the transition probabilities between the
first- and second-stage states with the reward probabilities associ-
ated with each second-stage stimuli. In fluid-reasoning puzzles that
require considering two  or more joint relations, children have been
found to select answers at the same speed as adults, but with less
accuracy (Crone et al., 2009; Vodegel Matzen et al., 1994). These
findings suggest that children may  not consider all the relevant
dimensions of the problem before selecting an answer. Children in
our reinforcement-learning task may  similarly not recognize that
recruiting transition knowledge at the first stage influences their
later options, and therefore fail to integrate this knowledge into
their evaluation at the first-stage.

Working memory plays a significant role in both fluid reason-
ing (Kane and Engle, 2002) and model-based choice (Otto et al.,
2013a, 2013b). A large body of research has shown that work-
ing memory improves with age (De Luca et al., 2003; Tamnes
et al., 2013). In this study, nearly half of the participants, across
all age groups, in whom we  assessed working memory performed
at ceiling. Thus, we failed to obtain a reliable index of working
memory, precluding the ability to clearly characterize its contribu-
tion to developmental changes in reinforcement-learning strategy.
Nonetheless, we  observed a significant relationship between work-
ing memory and model-based choice, suggesting that age-related
improvements in working memory may  contribute to the devel-
opment of model-based learning. Fluid reasoning, which mediated
improvements in model-based choice in our sample, also depends
on working memory ability. Thus, future studies, employing more
robust assessments of working memory, will be necessary to dis-
sociate the contributions of working memory and fluid reasoning
to the recruitment of model-based learning.

The neurocircuitry underlying the development of model-based
learning has not been directly characterized. However, the neu-
ral substrates underlying the cognitive processes examined in this
study have been previously explored. Statistical learning depends
on medial temporal lobe structures, including the hippocam-
pus (Davachi and DuBrow, 2015; Preston et al., 2004; Schapiro
and Turk-Browne, 2015). Recent findings suggest that develop-
mental improvements in statistical learning parallel hippocampal
structural development (Schlichting et al., 2016). To inform goal-
directed actions, these learned sequential representations must
be integrated with learned associations between stimuli, actions,
and past rewards, which depend in part on contributions from
onents underpinning the development of model-based learning.
05

the striatum (Balleine and O’Doherty, 2010). Working memory and
relational integration have been shown to depend on dorsolateral
(Curtis and D’Esposito, 2003) and rostrolateral (Wright et al., 2008)
prefrontal cortical regions respectively. Cortical maturation typ-

dx.doi.org/10.1016/j.dcn.2016.10.005
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cally proceeds from posterior to anterior cortical regions, with
he dorsolateral prefrontal cortex being one of the latest maturing
egions (Gogtay et al., 2004; Shaw et al., 2008). This developmen-
al trajectory mirrors the proposed organizational hierarchy of the
refrontal cortex, in which increasingly complex and abstract rep-
esentations recruit more anterior regions (Badre and D’Esposito,
007; Dixon and Christoff, 2014). Thus, younger individuals, for
hom rostral and dorsolateral prefrontal regions are not yet
ature, may  have greater difficulty integrating and recruiting

he multi-dimensional cognitive representations on which model-
ased learning depends. More broadly, this literature suggests that
lements of the integrated prefrontal-hippocampal-striatal circuits
nderpinning key component processes of model-based learning
xhibit distinct, and often protracted, maturational trajectories.
irect examination of the age-related changes in these circuits will
e necessary to further elucidate their specific functional roles in
he developmental emergence of model-based choice.

In this study, we found that the fluid-reasoning abilities within
 cohort of children, adolescents, and adults accounted for age-
elated changes in their recruitment of model-based learning. Fluid
easoning is a construct originating from the field of psycho-

etric intelligence (Cattell, 1987), which typically employs tasks
hat are substantially different from those employed within cog-
itive psychology and neuroscience to assess related constructs
uch as working memory and other executive functions. While
here is debate regarding the degree to which these overlapping
onstructs are indeed dissociable, (Friedman et al., 2006; Decker
t al., 2007), our findings are consistent with others in the liter-
ture observing correlations between these cognitive constructs
nd reward-guided behaviors (Shamosh et al., 2008). We  propose
hat such correlations reflect a mechanistic relationship, in which
hese cognitive processes provide a foundation for the evaluative
omputations that inform motivated behavior. This interpretation,
upported by our present findings, suggests a direct link between
he protracted development of these cognitive abilities (Ferrer et al.,
009) and the marked developmental changes in reward-related
ecision-making (Hartley and Somerville, 2015).
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